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Synopsis
The present work is a continuation of the author’s paper ‘On the Schröding

er Eigenvalue Problem’, Mat. Fys. Medd. Dan. Vid. Selsk. 32, no. 4. (1960) 24 pp., 
in which the potential was assumed to be of the form —----- V0(r), Vo (r)r2 r
possessing a power-series expansion within a finite interval and vanishing else
where. It was required that |/(2 Z + I)2 + 4 ka was not an integer, a condition 
which is now dropped. The eigenvalue problem is again reduced to the forma
tion of a series whose terms are obtained by a simple process the main opera
tion of which is the integration. The formulae contain the potential V0(r) as 
such. The eigenvalues appear as roots of rapidly converging power series; the 
eigenfunctions are expressed in terms of functions obtained in the process of 
forming the said power series. The method is applicable also to the case where 
the mass is a function of r.

Printed in Denmark 
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1. Introduction and Summary

In this paper we shall consider the Schrödinger eigenvalue problem

d2R 2dR
dr2 r dr

«(0) < oo and 7?(r)->0 for Z’ —> oo 9

with / = 0,1, 2, . . . and

^(0 = ^-;-Vo(r),

(1-1)

(1-2)

where Vo(r)=|=O only for re[0, L], possessing in that interval an absolutely 
convergent power-series expansion in r; a and b are arbitrary real constants.

In a previous paper(1> the above eigenvalue problem was considered in the 
special case of I = 0 and in the case where | (2 I +1 )2 + 4 ka is not an integer 
—a condition which we shall drop here, thus including in our treatment the 
important case of a = 0.

The main result of the present paper will be the formula

-|A(1) + C(1) <Z2-(c7$)

A(l) Wca(2 2)

for the eigenvalue Â = l/Å*  | £ | L2. Here

and
1*
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(Â2-V (50)4(50^, (1.5)

r

(1-6)

/ \2

where V(s) = l^j + kk2V0(Ls) and s = y (see als° (2.18 a)). The series A (s) 

converges absolutely for every se[0, 1] and for every finite Z. The functions 
Wc q (x) — known as Whittaker functions—are defined by the integral 
formula(3)

i_ x
_2 r e xc 

C, Ç (-1) = , .

which may be used in practical calculations at least in the case where q— c 
and q + c are integers*.  The constants x, c, m, q, and p of the formulae 
(1.3)—(1.6), expressed in the notation of (1.1) and (1.2), are as follows:

2 kbL
2(P + iyc (1.7)

The eigenfunction of (1.1), corresponding to the eigenvalue Åif is given by

m—2
Cs 2 Af (s) for se[0, 1]

Ctr(z0^ WC 3(2Âi.s) for se(l,oo).
(1.8)

Here, A/ (s) is defined by (1.4) with substituted for z, the factor ct(20 is 
obtained from (1.3), and C is the normalizing constant. As is seen, the 
eigenfunction is obtained as a by-product of our calculations.

In certain shell-model problems of nuclear physics the constant k of 
(1.1) appears as a function of r. In the cases where k(r)(E — V(r)) is of the 
form (1.2) our method is applicable after a straightforward modification.

The eigenvalue problem (1.1) is thus on the whole reduced to the forming 
of the series (1.4). The terms of that series contain the potential function 
Vo (r) as such. Consequently the power-series expansion of Vo (r) is not 
needed in the calculations; the mere existence of such an expansion is all

Cf. J. Blomqvist and S. Wahlborn, Arkiv för Fysik 16 (1960) 545.
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that is required for our purposes. Otherwise the method is largely independ
ent of the form of the potential function—which may very well be tabular 
or graphical—and the elementary character of the analysis employed makes 
it particularly well suited for digital computers.

In practical applications one would calculate a finite number of terms 
of (1.4) for (1.5).

In section 2 the solution of (1.1) is found for re[0, L] by the aid of a 
general theorem from the matrix calculus. The solution of (1.1) for re[L, oo] 
is known in closed form in terms of Whittaker functions ((1.6)). Equation 

(1.3) is obtained from the condition that /?(r) and 
dR(r)

dr
must be continuous

at r = L. By way of application, the case of a square well is considered. The 
treatment of a more general case (V0(r) as defined on page 3) would be 
practically the same.

The matrix calculations of section 2 arc carried out in detail in section 3, 
where also the convergence questions are dealt with.

2. The Derivation of the Eigenvalue Equation

We put (11) into matrix form as follows:

where

and

(2.1)

(2-2)

(2-3)

(2-4)
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In the above formulae one has

+ ka - --

The properties of matrix differential equations of the kind (2.1) in which 
P (s) possesses a power-series expansion in s converging absolutely for every 
s within a finite interval [0, sj are set out in a theorem by Gantmacher<2>. 
It follows from this theorem, since the matrix P(.s) of (2.1) possesses the 
required power-series expansion, that the general solution of (2.1) will be 
of the form

(2-6)

with z0 an arbitrary vector. Here

U = (2.6a)

where a is a constant that depends on P_x and P(s), vanishing if 2(p + l) in 
P-i is not an integer. The matrix A(s) is regular at s = 0 so that A(0) = I. 
Consequently there exists a convergent power-series expansion

4(S)-z+2a+ (2.7)

We shall now calculate the matrix A (s) by a procedure, similar to that 
employed in ref. (1), which obviates the use of power-series expansions 
(cf. for instance ref.<2>).

Substitution of (2.6) in (2.1) yields for A the equation

,/l 1
- + -(AP_t_p A)- P(s) A + sm~1AU = 0, 
as s (2.8)

where m stands for 2 (p + 1). As is seen on direct substitution, (2.8) is satis- 
lied for every se [s0, 1 ], s0>(), by the matrix

(2-9)
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where li = s_p_1 P(s) sp~'. The matrix 42(B) is delined as follows(1>:

fl (B) = I + Ç Bdsx + Bt/.sy Bds2 + Ç Bdsx Bds2 Bds3 + • • •, (2.10)

where, in carrying out the integrations, we pul the constants of integration 
equal to zero in all terms.

We shall prove in section 3 that A, as defined by (2.9), may be expanded 
into a power series in s which converges absolutely for every se [0, 1] and 
has the value I for s = 0, i.e., we shall prove that the expression (2.9) is 
really the A(s)-matrix of the general solution of the matrix differential 
equation (2.1).

From (2.4) and (2.9) it now follows that

1
x

1 .0 s'
(2.11)

x

where we have written briefly

(2.12)

(3.13)). Our is required to be regular at the origin. Now, the expression

(2.13)*o = -o

fl (jTp> P(s) sp->) =

-m

The elements A, B, C, and D are calculated in section 3

(!)
in braces has this property, and besides p > 1 ; consequently the vector

0 s-™
= sp"1

must be regular at the origin. This implies the following form for z0:

(2.14)

where Ci is a constant. For s + 0 we obtain from (2.11) and (2.14)
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(2.15)

The vector (2.15) is now the general solution of (2.1) for every se [0,1] 
which is regular at the origin. As the constant a has disappeared, we are 
spared the tedious task of calculating its value.

The solution of (2.1) for se(l,oo) such that 
according to rcf.(1),

(2.16)

here C2 is an arbitrary constant, and the function WC ff(.r) is defined by (1-6).
The constants p, x, m, c, and q are given by (1.7) and (2.5). Since the 
vectors (2.15) and (2.16) must be equal for s =1, it is necessary that

where, according to (2.12), (3.8), (3.9), and (3.13),

2 / 1?1
2)]

A (s) = e +

> \ <■*  * »T \ s- F(s2) </.s-2 \ \ r*  >2 »F (s2 „) ds2 „
»o »o *o • o

(2.19)

(2.1«)
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We summarize the symbols used in (2.17)—‘(2.19):

F(s)--^)2+A2-*L 2v0(£s)

2 kbL
m

in = 2 (p + 1 )

2 bL

Å2 = k\E\ L2

(2.20)

For practical calculations it is convenient first to expand (2.18) into a 
power series in Â2. This we are allowed to do because (2.18) converges ab
solutely for every se [0,1] (cf. section 3). As would be easy to show, we 
obtain

with

x x J® J®1 (*® 8

a(s)- i + £ m/M'AV-. W2r
k = 1 r = k Jo » 0 Jo Jo

and h = e *ssm.

The term
(•« /»s, f*S2r-l

>, (r ; Å) \ fds1 \ hds2 \ \ gds2 r
Jo Jo Jo Jo

has the following meaning: k g's out of the r g's of the integral

Z (r’ °)
f*S2 T— 1

• • fd^ r_i \ gds2 r
Jo

are replaced by h, and the summation is extended over the integrals ob
tained on the performance of all permutations of these k h's and r—k g's.
For instance, pS pSi ps> ps3

Z (2 ’ 1 ) \ fdsl \ hds2 \ fds3 \ f/^4
Jo Jo Jo Jo
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As is clear from (2.15) and (2.16),

CpS^A^s) for se[0,l]
/<<(«) = 1 n C2-21)

ClCT(Âi) q (2 for se(l,oo],

the factor <7(2^) being obtained from (2.17). The constant Cj is obtained 
from a normalizing condition.

For an application we shall consider the simplest example, the square 
well. It is clear from the above formulae that the treatment of a more general 
case would be essentially the same. Now

and
a = 5 = 0

According to (2.20) we have

x = 0, 777 = 2 (/ +1 ), c = 0, and q = I + -.

We then obtain from (2.17)—(2.19)

det

(A2-ffi Ä___G2-A2)** 1
777 + 1 w = 1 2w77 ! (777 + 2 n + 1 ) ! ! 

t G2-A2)”
^w = i 2”n! (777 + 2 n-1)! !

-(l + / + a)VV0>|I(2A)-(?2

H'O, ,(2 A)
= 0,

/(2.22)

n
where A2 = k | E | I2, Xl = kV0I2 and (177 + 2 77 ± 1) !! = 77(771 + 2 Å ± 1). The 

fc = 0
functions W 1 (r) and W , , 1 (x) are calculated most conveniently bv o, i + gv 7 -1, i + 2 - ■
application of (1-6).

In case 777 = 4, we have, as is readily seen,

/(|/z2 - Ä2)2sin | 2q — A.2 + 31/22 — A2cos [/A.2 — A2 — 3 sin |/2q — A2 A2 + 3A + 3\ 
det _____ ,_____ = ”• (Z.2.5)

y - | A2 - A2 cos |'Aq - A2 + sin | Ap - A2 -2-1 '

By using the power-series expansions of sin | Aq-A2 and cos|/Aq-A2 and the 
formula (1.6) it is easy to show that (2.23) and (2.22), with 771 = 4, are 
identical.
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3. The Form and Properties of the Matrix Q [s P 1(v) .s'/  ' |

We shall first establish a useful property of the matrices Ï2. Lemma:
Let us assume that it is possible to write the (square) matrix H defined in 
the interval [0,1] and singular at the origin in the form H = Hr + H2 so 
that the elements of the matrix H1 are integrable over the interval [0,1] 
and those of H2 are integrable over every interval [s0, 1] with 0 <.s0<l. Then, 
for sc [s0, 1],

+ (3.1)
where (»s r»s .‘St

(Hr) = / + \ Hy d-sq + \ Hx d.S1 \ H, ds2 + • • •.
• 0 Jo Jo

As is well known* 2), the formula (3.1) holds in the case of ,s0 = 0.
Proof: Since the elements of Hr are integrable over the interval [0,1], 

the matrizant exists for every se[0, 1], and so does [ï2q(H1)]~1 (cf.
ref.* 2)). Consequently the matrix (H1)]-1 H2 (Hx) has the same pro
perties as the matrix H2. We now proceed by the same method as that 
applied to the case of ,s0 = 0 in ref. *2). Let us put

X=^(HJ, T=0(H1 + H2)

and Y=XZ. By differentiation we obtain

(H1 + H2)Y= H.XZ + X^

for every se[s0,l], 0<s0<l, from which it follows that

Hence

for all se [s0, 1], 0<s0<l, which completes the proof.

As was shown in ref.* 1), the series £?(B), where B is a matrix singular 
at s = 0, converges absolutely for every se [s0, 1] when 0 <s0< 1.

Remembering (2.2) and (2.3), we then obtain
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where m stands for 2 (p + 1 ) and F (s) for 
identify and H2 of our lemma with

/ \ 2
+X2-ri(s). We can now

By an obvious modification of a formula introduced in ref.(4> we obtain for 
SE [.Sq, 1 ], 0 <s0< 1,

wn (s) eXS1 (O22 Gsi) <^i

A e_XS1 ,sf F(sx) wu (.sj ds1 co22 (s)
with

=2’a^(s), i = l,2, (3.5)
n = 0

(3.4)

* The formula (3.4) may be verified also by direct differentiation after the absolute con
vergence of the power series a>n (s) and that of the power series e 2P (s) contained in co22(s) 
(cf. (3.10)) have been proved.
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The series ton (s) now converges absolutely for every se [0,1 ] (i.e., not 
only for se[so,l]). Indeed, from the fact that, for .$£[0,1],

|F(s)|<M<oo, and e"xs < 1,
it follows that

I « (i)
2 n

for every n = 0, 1, 2, ... and for every se[0,l].
As both c±xs and F(s) possess a power-series expansion in s absolutely 

convergent for every se[0,l ], the same is true of con(s). Since it was required 
that A (0) = I, and since co11 (s) is regular at s = 0 and £?[] (H^ = I, we must 
replace (3.6) by

«ft (■'■) - Vx ” ’I " </»! \ J* E (’2) ^2 \ ■ \ F „) *2  „ ■ (3.8)

Jo Jo Jo Jo

As e-xssmF(s) is continuous for every se[0,1], and the series œ11(s) is 

absolutely continuous for every se [0,1 ], the integral \ e *s' s™ F (sx) con (sx) dsl
•'o

exists for every se[0,lj and has the properties of srø + 1co11 (s). In compliance 
with the requirement that co21(0) = 0, we set

W21 GO = Çe_XSl.s^F(s1)ù)11(s1)(/s1. (3.9)
’’o

The series co22 (s) is more complicated since the integrations will produce 
an Ins—function in each a22^ (s). As may be shown by means of the abso
lutely convergent power-series expansions of e±xs and F(s), the functions 
œ22(s) and co12(s) have the respective forms

w22(s) = ^^01)^11 («1)^! ] - Ins + o>g)(s) (3.10)

'*  = 1 /(Jo I
and

/ m \
W12(O = JE Qk W11(s)-lns + s“m + 1co^12)(s), (3.11)

' k = 1 J

where the lower limits of the integrals have been chosen to meet the re
quirement A(0) = /. The Qk are numbers depending on x, ni and F(s). 
The functions «^(s) and (s) have the properties of co11(s); in particular,

(0) = Mz2 (0) = 1 •
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We now have from (3.1), (3.2) and (3.4)

co11 (s) being defined by (3.5) and (3.8). By choosing a = Qk we obtain 
from (2.9) and (3.12)

X

(3.13)

Since the functions (s) and (o^ ($) are not needed in the calculations, 
their forms are not given here. As was made clear above, the matrix A(s) 
has all the required properties: A(s) may be expanded into a power series 
in s convergent in the interval [0,1], and A has the property A(0) = I. From 
the fact that A(s) satisfies (2.8) for every .sefso, 1], 0<s0<l, it now follows 
that A(s) satisfies (2.8) for every ss[0, 1].
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